Effects of chromosomal rearrangements on transvection at the yellow gene of Drosophila melanogaster.
نویسندگان
چکیده
Homologous chromosomes are paired in somatic cells of Drosophila melanogaster. This pairing can lead to transvection, which is a process by which the proximity of homologous genes can lead to a change in gene expression. At the yellow gene, transvection is the basis for several examples of intragenic complementation involving the enhancers of one allele acting in trans on the promoter of a paired second allele. Using complementation as our assay, we explored the chromosomal requirements for pairing and transvection at yellow. Following a protocol established by Ed Lewis, we generated and characterized chromosomal rearrangements to define a region in cis to yellow that must remain intact for complementation to occur. Our data indicate that homolog pairing at yellow is efficient, as complementation was disrupted only in the presence of chromosomal rearrangements that break<or=650 kbp from yellow. We also found that three telomerically placed chromosomal duplications, containing approximately 700 or more kbp of the yellow genomic region, are able to alter complementation at yellow, presumably through competitive pairing interactions. These results provide a formal demonstration of the pairing-dependent nature of yellow transvection and suggest that yellow pairing, as measured by transvection, reflects the extent of contiguous homology flanking the locus.
منابع مشابه
Interactions of zeste mutations with loci exhibiting transvection effects in Drosophila melanogaster.
Zeste (1-1.0; 3A3) mutations have been known to modify the expression of two gene complexes: white (1-1.5; 3C1.5) and bithorax (3-58.8; 89E1-4) in Drosophila melanogaster. Certain mutations of these complexes have been shown to behave in a synapsis-dependent fashion. That is, certain bithorax and white genotypes exhibit one level of expression when the two copies of these loci are able to synap...
متن کاملTransvection and silencing of the Scr homeotic gene of Drosophila melanogaster.
The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that di...
متن کاملTransvection-Based Gene Regulation in Drosophila Is a Complex and Plastic Trait
Transvection, a chromosome pairing-dependent form of trans-based gene regulation, is potentially widespread in the Drosophila melanogaster genome and varies across cell types and within tissues in D. melanogaster, characteristics of a complex trait. Here, we demonstrate that the trans-interactions at the Malic enzyme (Men) locus are, in fact, transvection as classically defined and are plastic ...
متن کاملAn analysis of transvection at the yellow locus of Drosophila melanogaster.
Studies of a wide variety of organisms have shown that homologous sequences can exert a significant impact on each other, resulting in changes in gene sequence, gene expression, chromatin structure, and global chromosome architecture. Our work has focused on transvection, a process that can cause genes to be sensitive to the proximity of a homologue. Transvection is seen at the yellow gene of D...
متن کاملThe effects of chromosomal rearrangements on the zeste-white interaction in Drosophila melanogaster.
Three gene systems have been shown to exhibit proximity-dependent phenotypes in Drosophila melanogaster: bithorax (BX-C), decapentaplegic (DPP-C) and white (w). In structurally homozygous genotypes, specific allelic combinations at these loci exhibit one phenotype, while in certain rearrangement heterozygotes the same allelic combinations exhibit dramatically different phenotypes. These observa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 183 2 شماره
صفحات -
تاریخ انتشار 2009